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multiprocessors.

91) 2O~



2

This report represents the technical summary of AFOSR grant 87-0130 to the Depart-
ment of Computer Science of the University of Maryland for the period July 1, 1987 until
October 31, 1989. Copies of all relevant papers have previously been forwarded to AFOSR as
they appeared. The activities from March 1, 1987 through June 30, 1988 have already been
reported to AFOSR, and a copy of that report is attached as an appendix to this report.
Since this is a multi-investigator effort, some of these summaries represent the completion of
previous projects while others represent ideas just now being developed.

This research was under the direction of the principal investigators Dr. Victor Basili, Dr.
John Gannon and Dr. Marvin Zelkowitz.

1. The TAME Environment

During this past year, the emphasis on the TAME project has been on formalization and
integration of its concepts and models. These models are stored in an Experience Base which is
part of an Experience Factory [Basili89]. The Experience Factory allows previously defined
models to be reused, after some possible modification, in future projects.

More specifically, logical and physical representations for process, product and quality
models have been studied and the Goal/Question/Metric (GQM) paradigm has been packaged
to allow the integration with these various models. Thus the primary parameters of a goal,
its purpose and perspective, can be written as an ordered pair: a model of the object of study
and a model of the quality perspectives of interest. The secondary parameters, the focus and
the point of view, are defined as modifiers of the object and quality perspective, respectively.
Thus a particular GQM model ties together a set of models so that it can prescribe the data
that needs to be collected, organize its collection and allow for the interpretation of the data
within the context of the goal.

1.1. Goals

The current version of the goal template is defined as follows:

Purpose: Analyze (objects: a single object, a set of objects, the relationship between a set of
objects,...) for the purpose(s) of (focus: characterization, evaluation, prediction, motivation,
comparison, improvement,...)

Perspective: with respect to a model of the (cost, effectiveness, correctness, defects, changes,
product metrics, reliability, etc.) from the point of view of the (developer, manager, customer,
corporation, researcher, etc)

Environment: in the following context (process models, people factors, application types,
methods, tools, constraints, etc.)

For example, we might decide to analyze the system test method for the purposes of evalua-
tion and improvement with respect to a model of defects that persist from one lifecycle stage
to another from the point of view of the developer in the NASA/GSFC environment (i.e., a
version of the waterfall model applied to ground support software for satellites running on a
DEC 780 under VMS, etc.).
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1.2. Questions

Guidelines for posing questions associated with the goals have been standardized. While
questions related to products, processes, and resource models necessarily differ, our guidelines
suggest a set of common subgoals that need to be addressed: quantitative definition of a pro-
duct, process, or model; identification of quality perspectives; and specification of feedback
mechanisms related to the quality perspectives.

Guidelines for defining products, processes, or models

Products are characterized quantitatively by the following components:

physical attributes (size, complexity, etc.),
cost (effort, computer time, etc.),
changes and defects (errors, faults, failures, adaptations, and enhancements), and
context (an operational profile of the user community).

Process models are characterized quantitatively by:

process conformance (how well the process is performed) and
domain conformance (an assessment of the object to which the process is applied and
the process performer's knowledge of the object).

Models are characterized quantitatively by:

model complexity (the number of parameters, ranges on those parameters, etc.),
model appropriateness (an analysis of how relevant the model is for that object),
errors made in applying the model (if relevant),
model conformance (an assessment of how well the model is adhered to), and
cost (of applying the model in terms of effort, computer time, etc.).

Guidelines for identifying quality perspectives

Quality perspectives may be quantitative or qualitative (e.g., reliability or user friendliness).
They provide an interpretation of the m,, ">' Telative to the data collected and help identify
metrics. Quality perspectives include ques. i: -ilated to

the models used (a quantitative specification of the quality perspective),
the appropriateness of the model for the particular project environment,
the validity of the data collected,
the model effectiveness (a quantitative characterization of the quality of the results
produced according to this model), and
(optionally) a substantiation of the model (an alternative model to help evaluate the
results of the primary model).

Guidelines for specifying feedback mechanisms
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Feedback information includes questions related to improving the products, processes, various
models and GQMs based upon the quality perspective. It should also include lessons learned
as well as information that will change the models. Feedback very often references other fac-
tors not explicitly mentioned in the definition of the product or quality perspective. In these
cases it should be checked that these factors exist either in the environment section (when
there is an attempt to evaluate against a data base) or in the definition of the product section
(when there is a need to examine the model of the project).

1.3. Sample Quality Perspective Model

The sample goal above sought to analyze the system test process for the purposes of
evaluation and improvement with respect to a model of defects that persist from one lifecycle
stage to another from the point of view of the developer. After developing a model of the
developer's system test process and evaluating the process and domain conformance for the
current project, we need to define a quality perspective for faults found in various lifecycle
stages, We measure the faults found in the system under development:

Es = #faults found in system test in this project
Ea = #faults found in acceptance test in this project
Eo = #faults found in operation in this project

and compare them to the faults discovered in a set of previous projects {Pi}

PEs = average #faults found in system test in {Pi}
PEa = average #faults found in acceptance test in {Pi}
PEo = average #faults found in operation in {Pi}

Simple Model of Defect Slippage

The ratio of faults present during system test on this project to faults found from sys-
tem test through operation.

REs = Es/(Es+Ea+Eo)
The ratio of faults present during system test in the standard projects to faults found
starting at system test.

RPEs = PEs/(PEs+PEa+PEo)
The relationship of system test performance on this project compared to the standard
projects.

QEs = REs/RPEs

Simple Feedback Interpretation

if QEs < 1 then method good
elseif QEs = 1 then

method average
if cost lower than normal then method cost effective

elseif QEs > 1 then
if process conformance and domain conformance good then method poor
else method different
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Clearly this process should be done not only at this high level but for each class of fault,
the total cost to isolate and fix a fault in total and by class of fault. We can do the calcula-
tion by error and failure category as well. We can also look at normalized defects by size.

1.4. Current Activities

We are in the process of generalizing this simple model into a class of models that can be
parameterized to include other phases as well as various classes of defects. This involves an
understanding of how the questions and data collected change as the parameters change, how
the model may be represented so as to be instantiated properly using the different parameters,
and how the interpretations might change appropriately.

To establish the models as part of the Experience Base, we are working on a top level
architecture that represents and integrates the various models. Mechanisms under study
include the use of an object oriented language for representing the quality models, a process
model language for representing processes, and the use of expert system shells for representing
and interpreting the data, and integrating the various models.

2. Integrated Environments

2.1. Syntax-Based Program Editing

The SUPPORT environment was developed to study semantic interactions in the
development of source programs. SUPPORT uses a syntax-based (i.e, language-based) edit-
ing paradigm for program generation. Pure syntax-based editing is a simple macro-like sub-
stitution and such macro substitutions exist in several conventional editors. For example,
Emacs and Digital's LBE (Language Based Editor) both permit such substitutions anywhere in
a program. However, SUPPORT's features go far beyond simple substitution: screen layout
(e.g. unparsing the program tree to a "pretty-printed" display), semantic checking (e.g., type
consistency between declarations and uses of variables), testing (e.g., coverage metrics and test
oracles), and source-level debugging. SUPPORT offers an integrated package or environment
of editor, interpreter, and debugging and testing tools [Zelkowitz89a, Zelkowitz89b]. The pro-
posed advantages for such an editor were many:

(1) Productivity would increase because source program generation would be efficient (a sin-
gle mouse or function key click would generate an entire construct) and numerous errors
(e.g., missing paired symbols and type-inconsistent expressions) either could not occur or
would immediately be detected.

(2) Predefined screen layout would provide a uniform program structure, enhancing a
programmer's comprehension and freeing him from maintaining a format manually.

(3) The integrated package of tools enables testing and debugging to proceed in the same
notation as program development.

Our experiences with SUPPORT showed many of these advantages to be illusory
[ZelkowitzgOal. While most program construction activities are performed more quickly using
syntax-based editors, several common constructs present problems that reduce the gains. For
example, in adding an if statement, the editor chooses between implicitly inserting an else
clause and (possibly) having a programmer delete it, and requiring a programmer to add
necessary else clauses explicitly. In either case, the editor is wrong about half of the time. A
more serious problem is that the editor expects syntactic units to be added in the manner in
which a top-down parser would encounter them; however, programmers usually write source



code from left to right. For adding new statements, there is not much difference between
sequential insertion and a top-down parse:

<stint list> <stint list>

<strut> ; <stmt list> <stint>

In either case, statements are processed left to right. However, inserting expressions such as
A+B*C requires that symbols be selected in prefix order (e.g., "+A*BC"). The need for an
internal parser (such as the SUPPORT's LALR parser) to allow infix notation to be automati-
cally parsed into the appropriate program tree structures is crucial to the success of all such
editors.

Error prevention and early detection do not benefit experienced programmers as much as
novices. Experienced programmers generally do not make many syntax errors. When they do
make errors, experienced programmers may prefer to finish entering their code before repairing
an error. However, with a syntax-based editor, only correct syntax can be entered. The sys-
tem will usually halt and beep until corrective action is taken. Thus there is a disruption in a
train of thought where some semantic issue needs to be put aside (and forgotten?) in order to
fix some simple syntax.

Although it generates nicely indented displays of source code, predefined screen layout
cannot handle special cases (e.g., a sequence of conditional statements) or text not defined by
the language's BNF (e.g., comments).

While source-level testing and debuggiig is very convenient, they are not unique to
syntax-based editors. One needs an integrated framework and data repository for a source
program. The current interest in CASE (Computer Aided Software Engineering) tools
exemplifies this, and SUPPORT is simply a CASE tool with a syntax-based editor for a base.

Our experiences with SUPPORT are by no means unique. For example, Mentor, initially
developed at INRIA, has had a similar pattern of development and use:

Novices used menus but experienced programmers rarely did;

Experienced programmerb wanted the full-screen Emacs editor for textual input and
modification (providing functionality similar to SUPPORT's editor) using automatic
parsing and unparsing of the Mentor input; and

Switching between Mentor and Emacs was difficult due to the inherent problems in
placement of comments.

On the other hand, Mentor was a powerful source code maintenance system due to the
integration of many program analysis tools which shared semantic information about a pro-
gram. But just as in SUPPORT's case, such tools are mostly a function of Mentor being an
integrated environment and not simply an editor.
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In conclusion, the drawbacks seem to be as serious as the advantages in syntax-based
editing, which probably explains their lack of growth and popularity since the early 1980's.
Since source code development is often estimated as being 15% of total life cycle costs, even if
an editor reduced coding time to zero, productivity improvements would remain small.

2.2. Creating Specifications

The previous discussion indicates that while syntax-based editing of source programs is a
powerful technique, it has minimal effect upon productivity. However, since requirements,
specification, and coding consume 75% of development costs, improving those phases of the
life cycle might have more impact on productivity. In addition, improving the correspondence
between specifications and design and between design and source code would eliminate inter-
face errors, hence decreasing the effort needed in testing and further increasing productivity.

We are investigating syntax-based editing of specifications. By modifying the grammar
of the language processed by SUPPORT, SUPPORT became an interface "shell" for a series
of integrated environments (e.g., AS*). Much of software design consists of the creation of
complex data objects, usually referred to as abstract data types, and the definition of func-
tions that operate on these abstract objects. Using algebraic specification technology, a series
of equations relates the operations of the abstract type to each other. These equations, in the
proper form, can be viewed as a term rewriting systems. The use of the Knuth Bendix algo-
rithm defines a proof of adequacy of the resulting algebraic equations by showing the
equivalence of supposedly equal terms to the same ground (e.g., constant) terms. However,
since the Knuth Bendix algorithm is based upon an ordering transformation from one term to
a "simpler" term, the algorithm defines an operation that can be "executed" and proven to
terminate. Therefore, any set of axioms that is "Knuth Bendix" can be translated into a
series of transformations that can be executed in some programming language. In addition,
the executable program provides the basis of a test "oracle" for judging the correctness of
enhancements.

Our model of a specification follows closely with the initial algebra approach of other
term rewriting systems. An AS* specification contains 3 features: a set of sort names which
define new abstract objects aid their constructors; a signature which defines a set of defined
operations and constructors for manipulating the abstract objects; and a set of oriented equa-
tions (or axioms) which relate the defined operations and constructors to each other, and
Details of AS* are explained in [Antoy90].

A prototype implementation of the AS* system has been constructed and executes on the
SUN 3 workstation under Berkeley UNIX 4.3. The four components are described below.

(1) AS/SUPPORT provides syntax-based editing capabilities for creating specifications.
AS/SUPPORT guarantees that all sort definitions have syntactic consistency with the
underlying sort syntax. After the user builds a sort, AS/SUPPORT translates his
specification into a format suitable for Prolog and invokes AS/VERIFY as a subprocess.

(2) AS/VERIFY checks that the specification is executable. Inadequate axioms are
highlighted to allow the user to change the specifications interactively. The Knuth-
Bendix algorithm either shows convergence of the axioms or indicates additional axioms
which are needed; however, it may not indicate when sufficient axioms have been added
in the case of not converging rapidly enough (the usual problem with undecidability
results). Other verifiers usually interact with a user who manually indicates approval to
continue the process or terminate.
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(3) AS/PC is a translator that converts specifications into standard Pascal source pro-
grams.

(4) PC is the standard system Pascal compiler. At this point, the specifications have been
converted to standard Pascal, and any comparable compiler can be used for compilation
and execution.

This project is part of an ongoing effort in understanding formal specifications. Current
efforts are related to developing axioms that can be converted to executable code most
efficiently. We are also in the process of using AS* in enhancing existing Pascal programs
with new features in order to test this methodology in a realistic setting.

AS* addresses many of the important specifications and code reuse problems today.
Specifications are formal, yet executable and can easily be mapped into a variety of program-
ming languages. Maintenance is enhanced via tests on the existing source program. Determin-
ing properties of specific abstract data type implementations is explicit and should help in the
necessary process of understanding and reusing source program libraries.

3. Program Verification

During the past fifteen years, Mills and others have been developing a theory of func-
tional program semantics. A program is specified as a function or relation that defines a
correspondence from one domain to another. A proof methodology was developed for formally
showing that a given program is consistent with its specifications. As part of our effort, we
have developed mathematical foundations for stepwise refinement and data abstraction
[Mills8g] [ZelkowitzgObl.

3.1. Functional Properties

Understanding a program as a mathematical object is understanding the functional
behavior it induces in a computer. An execution state is a relation or function whose domain
is the identifiers of a program and whose range is the values attached to those identifiers. The
meaning of a program is a mathematical relation or function, a set of ordered pairs that
defines a correspondence between one state (the inputs) and another state (the outputs). Pro-
gram P is correct with respect to specification relation r if, for every x E domain(r), P pro-
duces some member of the range of r which corresponds to x. The problems we try to solve
are: given a program, find and verify its meaning; and given a meaning, derive a program with
that meaning. The entire mathematical basis for our study rests on just five discrete
mathematical structures of character data: strings, lists, sets, relations, and functions. These
five structures are not only sufficient to deal with program correctness and program design,
but also admit treatment at various levels of formality with a mixture of English and
mathematical notation.

Following the work of Hoare and the designers of Alphard, we have developed a proof
theory for data abstractions using functional semantics. The essence of data abstraction is
captured by a diagram showing the relationship between the concrete objects manipulated by
procedures (e.g., P), and the abstract objects the programmer manipulates with abstract
operations (e.g., m) to achieve a solution. A representation mapping, denoted At , is
defined between the values of concrete objects and the values of the corresponding aAtract
objects. By convention, for objects common to the concrete and abstract worlds, the represen-
tation mapping is identity. Then the representation mapping can be extended to map any
concrete state to an abstract state.
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{abstract states)- m -abstract states}

A A
At1 pe At 1 pe

{concrete states) - - .{concrete states}

Intuitively, an implementation is correct if its data objects are manipulated in such a
way that the abstract objects to which they correspond, appear to be transformed according
to the abstract operations. To decide if this property holds, we show that the diagram com-
mutes.

A typeO m [ EP] o Atype

Of course abstract operations like m do not really exist except in users' minds. Pro-
cedures implementing abstract operations are written with two sets of comments, abstract and
concrete. The abstract comments are for users so they need not examine the code (or even the
concrete comments that document it). The abstract comments replace the abstract operations
in demonstrations that diagrams commute. If the implementation has been done properly, the
abstract comment can be believed, and used in proofs at the abstract level.

3.2. Beyond Functional Properties

We have begun to extend the functional paradigm into the realm of requirements
analysis. By extending the definition of program correctness, we can develop a framework for
discussing life cycle models and then develop an evaluation procedure that enables us to com-
pare different program solutions for a given specification.

Generally, there are several (actually many) feasible solutions to a given specification,
any one of which might satisfy our functional constraints. We usually under specify a set of
requirements and any program that meets those minimal requirements is deemed acceptable.
In addition, large systems have other requirements beyond their functionality: cost to build,
size and speed performance constraints, reliability criteria, etc. Therefore, given a basic
specification, there generally exists a set of specifications, each being different from the others
and each consistent with the basic specification. Each one could possibly lead to different
correct implementations. We would like to be able to understand this set of specifications and
to be able to compare them in order to determine which one from the set best meets the user's
needs.

We now summarize our extended model.

Def: Let PU be the problem universe of specification functions. That is, if f is a specification
function, f E PU.

Def: Let SU be the solution universe. SU represents algorithm designs. For example, if f E
PU is to sort an array, then bubble-sort, selection-sort and quick-sort would all be members of
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SU.

Def: Scaling function: Assume there is a function S such that if aEPU, then S(a)E/O..1/. Scal-
ing function S determines how good a specification we have. If S(a)-=O, then we have a "use-
less" specification and if S(a)=1 then our specification is optimal and cannot be improved.

Def: Solves: Let A and B be members of PU, and let S be a scaling function. We say that A
solvess B if and only if S(A)>S(B), i.e., A is an improved specification to B.

Def: Specifies: Let pEPU and PESU be the abstract function and concrete solution and let r
be the data representation function r o p __ [] o r. Define the exact specification P' for P as

that function such that r o P' = LP] o r.

With our concept of exact specifications, we can now extend the previous definition of
functional correctness:

Def: Correctness: Solution X is correct with respect to specification function R and scaling
function S if and only if X' solvess R.

It is important to show that we have not deviated from the previous definitions in the
functional correctness methodology. Therefore, we need to show that our definition of correct-
ness is consistent with previous formulations. We give this as the following theorem:

Theorem: Given specification function R, and solution P then R C [P if and only if for an
appropriate scaling function S, P' solves, R. By defining the scaling function as S(X)=I if R

r_ els 0, the proof follows.

As stated previously, functionality is insufficient as the only specification criterion.
There are at least three other classes of attributes: performance (e.g., size, execution speed,
disk usage), reliability (e.g., fault tolerance, accuracy, safety) and development (e.g., cost to
build, time, personnel costs).

We extend the definition of a specification function to include a vector B of basic
specifications, each B. is an attribute of the specification. Thus PU is a set of vectors. Simi-
larly, we extend S to be a vector of scaling functions. If zEPU and yEPU then x solves, y if
and only if, for all i, Sjx,) S (y).

Given a specicfi.tion vector f, a scal-ipg vector S and feasible programs P and Q such
that both r o fC [P or and r o f C Lo o r, we would like to determine which solution is
preferable. Obviously, if P' solves Q', or if Q' solves P', then our choice would be obvious.
However, such choices rarely occur in practice. All too typically, one solution might excel on
some attribute (e.g., execution speed) while the other might excel on another (e.g., low cost to
build). Comparing the relative importance requires a further extension to this model.

Def. Constraint set: If we have n attributes, let S be a vector of scaling functions. Consider a
third vector of weights W such that each w.E[O..1/ and Yw i = 1. We will call <S, W> the
constraint set for a specification.

Def: Performance level: Given a basic requirement B and constraints <S, W> where S is a
vector of scaling functions and W is a vector of weights, define the performance level PL of B
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relative to <S, W> as PL(BS, W) = E (w, * Sf(B)).

Given a basic specification B and a constraint set <S, W>, we can now discuss the rela-
tive merits of alternative solutions. If x and y are both to be feasible designs, then, at the
least, they must both satisfy the specifications i.e., we must have both z' solves s B and y'
solvess B. In addition we would like to use the solution with the greater performance level.
We call this the improves relation.

Def: Improves: Given a basic specification B E PU, constraint set <S, W.> and designs x and
y such that x,y E SU, we state that x' improves y' with respect to <B,S, W> if and only if

(1) x' solves s B and y' solves, B and

(2) PL(z' S, W) > PL(y'" S, W).

Not- that we are using a very simple sum of weights measure in order to compute the
performance level. We recognize the simplicity of this approach; however, even with such a
simple model we achieve interesting results. We plan to investigate other definitions later. For
example, we can plot each of the attribute values on a circular graph and then look at the
area covered by each potential solution (e.g., similar to Kiviat graphs for system performance
evaluation). This and other approaches will be studied.

What is important to realize, however, is that our definition of improves depends only
upon a definition of performance level to compare two solutions, not on the details of how the
two vectors are compared. What follows will remain true regardless of the underlying metric
used in the comparison.

Using this model we can apply it in diverse applications. Two such applications are
described in [CardenasgOj:

(1) If P(S) is the projection of vector S onto a subset of attributes, we can define a prototype
as:

Def: Prototype: Let B E PU be a basic specification and let <S, W> be a constraint set.
XESU is a prototype of B if and only if there is some binary vector v such that P/(X')
solvesp(s) PJB).

Given this definition, we now have a formal model for life cycle processes, such as the
waterfall model or the spiral model.

(2) Given several alternative designs to solve a problem, we can use the performance level
measure as a quality metric. For example, we propose a sorting problem, and then give
five applications and five alternative algorithms and show that each application has a dif-
ferent best solution based upon criteria other than functionality. In a second similar
example, we propose a hardware and software solution to a disk file algorithm and
choose among four competing designs.

We have looked at an aspect of functional specifications and developed an evaluation cri-
teria for comparing solutions to a given set of requirements. Using this model we can also
develop a framework for classifying and describing various life cycle models. While the work
is still preliminary, we believe that we have an important model that can easily be expanded.
Various definitions of performance level need to be studied in order to best approximate true
system design. In addition, as shown by the various examples, the model is applicable in
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various application domains. Other such examples need to be developed.

4. Data-Oriented Exception Handling in Ada

Exception handling mechanisms were added to programming languages to segregate nor-
mal algorithmic processing from error processing. However, there is little agreement about
what events constitute "exceptional conditions." Furthermore, binding exceptions to handlers
by attaching the latter to a program's control components clutters source text in much the
same way that testing operations' input and result parameters does.

Ada is the first widely-used language since PL/I to include exception handling features,
and its design reflects many improvements. However, Ada's exception handling mechanism
might still be altered to improve our ability to understand and validate programs. Although
handlers appear at the end of any block after the block's algorithmic code, introducing blocks
in the middle of statement lists to attach handlers inserts error handling code in the middle of
algorithmic code. Handlers and packages are not well integrated since such handlers apply
only to the initialization sequences of the packages and not the operations in the package
bodies. If a subprogram terminates because an exception is raised, then the values of out and
in-out aggregate parameters differ since a compiler may adopt either reference or copy-in,
copy-out implementation strategies. Automatic propagation of unhandled exceptions (rather
than explicit propagation of re-named exceptions) makes it impossible to determine statically
the set of handlers that can catch an exception.

We have redesigned Ada's exception handling features and implemented an preprocessor
to translate our features into Ada [Cui89, CuiO0]. Like Black, we raise exceptions only in
response to implementation insufficiencies, situations in which the storage reserved for an
object is inadequate to represent its value or when an operation's performance constraints can-
not be met. Our view of exceptional conditions as implementation insufficiencies results in a
mechanism that is tightly coupled with Ada's package construct. Exceptions are defined and
raised only in packages because such conditions are defined in terms of an object's representa-
tion, which can be manipulated only in a package body. Each data object declared has its
own set of (exception, handler) binding pairs specified in its declaration.

4.1. Empirical Studies

We analyzed about two dozen programs in the Simtel20 Ada Repository and categorized
their uses of exceptions. Most handlers take simple actions, such as propagating the raised
exception upward until termination, or just printing error messages. Of the 26 programs
analyzed, 15 have trivial exception handling (2 have no exception handling and another 13 just
print messages and propagate errors). Only 2 programs have more than 15% of their excep-
tion handling statements that implement algorithms to recover from errors. Few programs
have deeply nested exception handlers, and not surprisingly, these programs are very hard to
understand.

To determine the effects of transforming a procedure with control-oriented exception
handling into one with data-oriented exception handing, we exam'ned one of the two pro-
grams with non-trivial handlers (This program calculates the correct compilation order of Ada
source program units.) and rewrote its implementation. As expected, the original procedure
and the revised version (including the extra procedures) have about the same number of state-
ments. However, the new version breaks the original code into three smaller procedures,
resulting in better modularity and functionality. As for the complexity, the original version
has up to three levels of nested handlers, one of which was unreachable. In contrast, the
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revised version has no handler code mixed with the main code of computation, thus emphasiz-
ing the main algorithm and enhancing readability. Sample executions on worst-case data
show no difference in execution time between the two versions and approximately a 5% space
penalty in the compiled code of the data-oriented version.

We conducted two other studies to investigate the effects of different exception handling
mechanisms on program construction, comprehension, and modification. The subjects were
were experienced programmers working for commercial software companies. These studies
were performed on relatively small programs to help substantiate claims about benefits pro-
vided by data-oriented exception handling. Although the results cannot be generalized to
large systems, the data encourages us to apply our methods to these systems.

In our first study, we tested four pairs of null and alternative hypotheses that compare
the sizes of programs, numbers of statements per subprogram, and maximum and average
nesting depths of statements. We conjectured that programs with data-oriented exception
handling would have smaller measures of each of these metrics than similar programs with
control-oriented exception handling. Subjects solved the same problem twice, first with Ada
and then with our version of Ada with data-oriented exception handling. Although we evalu-
ate the results of this study as if it were a controlled experiment, substantial learning effects
may bias the results. Using data-oriented exception handling results in simpler (i.e., less dee-
ply nested) and smaller code.

Our second study was designed to test how the choice of the different exception handling
mechanisms would affect program comprehension and modification. Subjects read a two 4-5
page programs and answered several questions. In order to investigate the effect of different
exception handling mechanisms on program comprehension and modification, we designed two
equivalent versions of programs for each of the problems: a control-oriented exception han-
dling version (C) and a data-oriented exception handling version (D), respectively. A subject
assigned 11o work on version C of one problem studied version D of the other problem, and vice
versa. We tested two pairs of null and alternative hypotheses that compared test scores and
solution times. We conjectured that test scores would rise and solution times fall for subjects
using data-oriented exception handling. Data analysis shows that subjects achieved higher
average test scores in shorter time for version D programs than for version C programs.
Dividing the questions into two groups (comprehension and modification), we determined that
the differences of total scores mainly come from the latter group. Thus, our data-oriented
exception handling mechanism may have greater impact on modification activities (a more
realistic programming task) than on a programmer's ability to understand and answer ques-
tions about a program.

4.2. Summary

Declaring exceptions with a type's operations and associating handlers with objects in
declarations centralize information about exceptional processing and separate it from algo-
rithmic processing. Experimental results indicate that data-oriented exception handling can
be used to produce programs that are smaller, better structured, and easier to understand and
modify. With the exception of pre-processing time, no significant time or space penalty
results from this change. We are currently working on proof rules and test coverage metrics
that will permit us to compare these alternative exception handling mechanisms in other
ways.
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5. Compiler Scheduling of Parallel Computation

Much of the existing work in parallelism detection assumes scientific code with DO loop
indices, shared memory or restricted single-assignment, dataflow languages. We are extending
existing detection work to conventional languages (e.g., C) that may execute on either shared
or non-shared memory architectures [Bennet9OI.

5.1. Control State Analysis

A control state for a program is a set of control state variable-value pairs that fully
determine its control decisions. Our model of a computation is a digraph where each node is a
unique control state consuming and producing values, and each arc represents the data passed
between the nodes. Costs are associated with each arc (interprocessor communication), and
node (execution time). Before a task starts it must take time to receive from all parent tasks
which are on different processors, and after it completes it must take time to send to all its
children which are on different processors.

Our prototype parallelizing compiler consists of a parser, allocator, compressor, and code
generator. The parser reads source programs annotated with function timing information and
unrolls loops to produce a digraph representation called a "static graph" in which nodes
represent control states and arcs represent data dependencies. This graph is sent to an alloca-
tor which chooses an allocation of graph nodes to processors which is a tradeoff between the
speedup due to parallel execution and the overhead losses due to the communication required
for parallel execution. The control trees chosen by the allocator are sent to a compressor,
which merges identical trees and examines branches for repetitive structures that can be
turned into loops. Finally, the code generator which produces object code from the
compressed trees, inserting necessary communication primitives. The resulting program is a
truly distributed implementation of the original algorithm. Nodes communicate independently
rather than under the synchrony of a master processor.

5.2. Empirical Studies
We are currently experimenting with examples to evaluate how well our system works.

Preliminary evidence shows that we achieve speedups comparable to those achieved by DO-
loop analysis when working on problems whose control states contain just DO-loop indices
and the program counter. For example, analyzing a simple numerical integration using the
trapezoidal rule, our system achieved a factor of 4.7 improvement on 7-processor 68000-based
machine. Our model predicts slightly better improvement may be realized when when more
processors are available to us for testing. Furthermore, we are able to improve while state-
ment programs that other systems cannot handle. (e.g., a program that uses a sum to approx-
imate an integral which is especially useful near the integrand's spikes).

Several research problems related to granularity and serialization of operations have
arisen. When the granularity of the operations in loop bodies is small compared to communi-
cations operations, communications costs quickly destroy any gains from parallelism. We are
currently investigating techniques for allocating basic blocks rather than individual statements
by either compressing adjacent statements or treating inner loops atomically.

When a loop's values are functions of the results from its previous iteration, parallel exe-
cution may prove no better than serial execution. Only sophisticated analyses of the functions
(producing new algorithms) could improve such programs. In contrast, some serialization
problems (e.g., those in a Taylor series program we examined), stem only from the need to tell
that an iteration exists before it can be executed. Since our control-state method is based on
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preserving the set of control states created by an equivalent serial computation, these pro-
grams apparently cause problems. However, a run-ahead mechanism that would permit con-
trol states to be created and discarded if they were unneeded may improve the performance of
such programs.
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Abstract
This report summarizes the activites from this grant during the period March 1, 1987 through
June 30, 1988. Research progressed on the following topics: (1) Development of the TAME
measurement environment, a tool being developed to exploit the G-Q-M model for effective
management control over large scale software development; (2) Preliminary results from using
the SUPPORT Pascal programming environment and what was learned from its use over the
last three years; (3) Initial ideas in extending the integrated environment approach towards a
specifications methodology; (4) Understanding the semantics of programs maintained in an in-
tegrated environment; (5) Further investigations in verification methodology based upon func-
tional correctness properties and (6) Properties of distributed systems.
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This report represents the technical summary of AFOSR grant 87-0130 to the Depart-
ment of Computer Science of the University of Maryland for the period March 1, 1987 until
June 30, 1988. Copies of all relevant papers have previously been forwarded to AFOSR as
they appeared. Since it is a large multi-investigator effort, some of these summaries represent
the completion of previous projects while others represent ideas just now being developed.

This research was under the direction of the principal investigators Dr. Victor Basili, Dr.

John Gannon and Dr. Marvin Zelkowitz. In addition, Dr. Gregory Johnson received support
from this grant and directed some of its activities.

1. The TAME Environment

TAME (Tailoring A Measurement Environment) is a project to automate as much as

possible the measurement, feedback and planning needed in the context of software
development [Basili 87a), [Basili 87c]. The development of a prototype TAME system is
currently underway. The TAME system provides a mechanism for managers and
engineers to develop project-specific goals, and generate operational definitions based
upon these goals that specify the appropriate metrics needed for evaluation. The evaluation
and feedback can be done in real time as well as help prepare for post mortems. It will
help in the tailoring of the software development process [Basili 87b].

The TAME requirements have been developed and a model architecture has been

proposed [Basili 87c), [Basili 88]. TAME consists of four major components: user interface,
an evaluation mechanism, a measurement mechanism and an information base. The user
interface provides the support needed for helping managers develop operational goals (i.e.,
the tools necessary to operationally define goals based upon the goal/question/metric

paradigm, to input and validate manually collected data, and to physically interface with
the system). The evaluation mechanism provides feedback based upon the various project

goals. The measurement mechanism provides capabilities for automated collection of
metrics (e.g., structural test coverage metrics [Wu 87], data binding metrics, and static source
code metrics from Ada programs). The information base contains the historical data-
base, all project documents, the current project database, a goal/question/metric database
and other information necessary for support.

We are developing a first TAME prototype addressing the specific measurement,

feedback and planning needs. We are building upon previous experience in measuring
and evaluating aspects of the software development process and product. We will be using the
system for various measurement projects to evaluate the system during its various prototyp-
ing phases.

The scope of the TAME system is ambitious. On the one hand, we can build upon
experience in measurement and evaluation. On the other hand, a large number of research

questions remain to be solved. One major project is the further development of the
Goal/Question/Metric Paradigm so that goals can be generated more easily and reused more
effectively. To aid in this process, we have chosen the development of a set of goals, ques-
tions and mei~rics based upon evaluating a requirements document in the form of data flow
diagrams. The idea is to provide an example where we can develop a specific set of product
and process goals and generalize toward the generation of a goal generation language that
supports the generation of goals and their interpretation. Work has begun, with Professor
Amiram Yehudai from Tel Aviv University in Israel. We are using his automated object
oriented model to encode the requirements process so that it can be characterized and
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evaluated. We are analyzing both process conformance, based on the model characteri-
zation and product qualities, based upon an encoding of the final product.

The goal generation language will be implemented using some tool such as a hypertext
system, such as HyperCard, or a knowledge based system, such as Kee.

It is assumed that the first TAME prototype will evolve over time and that we will
learn a great deal from formalizing the various aspects of the TAME project as well as
integrating the various paradigms, subsystems, or individual tools that will necessarily be
built.

2. Environments

Research activities in the integrated environment area has progressed on two fronts,
leading to one new initiative. The SUPPORT integrated environment activities matured, lead-
ing to new work in the area of specification systems and reuse. In addition, research continued
in the areas of formal semantics for integrated environments.

2.1. Integrated Environments

The SUPPORT integrated environment project is nearing the end of its initial phase of
activities. SUPPORT is an integrated environment for the development of Pascal programs
that is operational on both Berkeley UNIX and IBM PC environments. In order to gain experi-
ence in using such an environment, based upon syntax-directed editing technology, it has been
used for the past 3 years as the primary environment by beginning Computer Science majors
at the University of Maryland. Based upon this experience, numerous changes and enhance-
ments have been made to this system.

An appropriate user interface is crucial for the acceptance of any environmental tool [Zel-
kowitz 88a]. SUPPORT provides a seamless interface to 2'bout a dozen tools that enable the
user to build, modify, test, debug and document his program. The consistent command struc-
ture and consistent screen display is necessary for ease in learning and accepting such systems.
SUPPORT is built around a multiwindowed display process, and the value of this design deci-
sion has proven itself numerous times as it has proven to be easy to add new windows and to
give the user easy flexibility of altering the viewing screen.

SUPPORT implements its own window manager, thus transporting the code to other
machine architectures has proven to be a relatively easy process. If the project were restarted
today, then a machine independent window system, such as the MIT consortium's X-windows,
would probably be used; however, such a system did not exist when SUPPORT development
began. SUPPORT has clearly shown the value of such a machine independent screen interface
and such standardization efforts should continue.

The ability to use any system implies that the user must be able to think in terms of the
language being implemented. This includes diagnostic facilities, also. Because of this, a diag-
nostic tool Drs. has been implemented as part of the SUPPORT environment [Kowalchack
87]. With Drs. the user can nagivate through a Pascal activation record in terms of the source
program data structures. The model implemented is the usual one - each procedure creates
an array of data objects and these data objects are nested as each procedure calls other pro-
cedures. Drs. allows the programmer to interact with the SUPPORT run-time system without
resorting to primitive machine architecture concepts and makes debugging programs much
easier. The ability to "reverse engineer" the Pascal source data objects from the actual activa-
tion record storage is essentially instantaneous, and while there is a performance penalty for
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providing such a feature, in a diagnostic setting, machine performance is of relatively low
priority. No detailed performance statistics have been generated; however, running the system
on an IBM PC/AT, the trace window of machine execution executes about as fast as a user
can monitor it, and the Drs. window operates at the speed of the keyboard, which is needed
for the user to indicate nagigation commands.

An additional feature that has proven to be valuable is the invisibility of the syntax edi-
tor. One criticism of such systems is that users have to input source text essentially as a pro-
gram parse tree. However, this is unnatural since most programmers think in terms of linear
strings of source statements. In SUPPORT, however, a user can either input the program in
the traditional syntax-editing paradigm as a parse tree, or else input the normal linear source
text. An internal LALR parser converts such source text to the parse tree representation
automatically. Thus many of the undesirable aspects of syntax editors is hidden from the user.

In addition, experience with the development of SUPPORT has validated many impor-
tant guidelines for large scale system developmert [Zelkowitz 88c]. While SUPPORT is a
relatively small system (about 28,000 lines of Pascdl source program in 28 modules), aspects of
this should apply to larger developments. Some of these guidelines are:

(1) Use interpreted tables for configuration control. In SUPPORT the grammar that is pro-
cessed as well as the format of the screen display are data files interpreted during pro-
gram execution. This allows for dynamic updating of the files and much easier changing
of the format than if these algorithms were built in. The higher execution time of such
tables in general are not apparent.

(2) Data abstractions simplify designs. SUPPORT separates each major data item in a
separate module. Screen management became almost a trivial operation as the functions
to add and delete lines from a window were processed independently from the mechanism
that displayed windows on the screen. The former allowed an easy interface to adding
new windows while the latter allowed for easy transportability of the system to alterna-
tive machine architectures. A second such feature was that the underlying program tree
was independent of what was displayed on the screen, allowing for each to change
independently.

(3) Use simple data structures. Efficiency is determined by overall design, not by clever cod-
ing.

(4) Windows are powerful display mechanisms. This has already been discussed.

(5) Understand your environment. This seemingly simple statement has major implications.
The literature generally proposes a top down design methodology for software develop-
ment; however, few such systems are truly 100% top down. As part of the specifications,
there are some constraints about the underlying hardware and software that will exist.
For example, if you have a task of traveling from Washington to San Francisco, then a
top down solution would probably not even consider a horse-drawn stagecoach since such
vehicles no longer exist. Similarly, any computer solution must necessarily ab initio have
certain constraints based upon the eventual low level design. In [Zelkowitz 88b] and [Zel-
kowitz 88c] several examples are given of how the architecture of the IBM PC and the
Intel 8088 microprocessor dictated several high level design constraints - something that
probably would not have occurred in a purely top down design methodology.
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2.2. Executable Specifications

Results from using SUPPORT have tended to confirm that experienced users do not view
the entering of source text as a major productivity enhancer. In studying this problem, it
appears as if such a system, like SUPPORT, would be more effective as a specifications and
design tool. Towards this end, the AS* project has been started [Antoy 87]. AS* is a system
for converting formal specifications into executable programs. Such a system has two major
benefits: (1) The specifications are formal, and can be proven to have certain properties; and
(2) The executable specifications serve as a check (as a prototyping tool or as a testing tool)
against with the eventual source program can be compared. This provides a mechanism for
"viewing" a system long before the source code is ready.

Our model is based upon algebraic specifications. A data type (i.e. a sort) is defined with
a series of operations giving the transformations on the data and a series of constructors for
building objects of the type. Operations are defined by a series of algebraic axioms. By con-
sidering each axiom set as a series of rewrite rules, they can be converted into executable
statements in a language like Pascal.

For example, the following is a formal definition of a list:

sort list is
constructor

nil;
cons integer, list;

operation head : list -> integer is axiom
head(nil) = ?;
head(cons(XY)) == X;
end;

A list is constructed out of the empty list (e.g., ni( and the cons constructor. A single opera-
tion head for the head of a list is demonstrated here.

A system ASSUPPORT, nominally based upon SUPPORT, has been designed to investi-
gate this technology. A SUPPORT grammar for creating sorts was designed, a Prolog pro-
gram, ASVERIFY, was proposed for automatically validating the sort axioms for termination
and other verification properties, and ASPC was designed to translate the sorts into standard
Pascal. Development of these tools has been initiated and will continue in the future.

2.3. Semantic Models

The approach of denotational semantics has begun to have a visible effect on the design
of programming languages. The designs of languages as diverse as ML, Scheme, and CLU
have been influenced by the mathematical insights of the denotational community. Mills's
functional semantics and the programming methodology based on it also reflect the denota-
tional approach [Mills 87]. Over the past year we have explored the possibilities of creating
programming environments that reflect the denotational approach. We have implemented a
prototype environment and language called GL to serve as a testbed for the research [Johnson
87] [Johnson 881.

The goal of the research is to create an entire integrated programming environment all of
whose aspects reflect the underlying simplicity and elegance of a careful, mathematically
rigorous design based on denotational semantics. The motivation for this effort is the
hypothesis that such an environment will have a significant positive impact on programmer
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productivity. While the Mills approach primarily focuses on the specification and implementa-
tion phases of the software life-cycle, the GL effort is directed toward the test, debug, and
maintenance phases. The research has been aimed at the following two goals:

(1) to assess on a relatively small but still realistic scale the impact on programmer produc-
tivity of the new proposed directions in programming environments, and

(2) to demonstrate the feasibility of the approach (i.e., to show that the proposed powerful
mechanisms that the environment will make available to the user can be implemented
with reasonable efficiency).

The GL environment is built around the idea that both stores and continuations should
be obtainable and manipulable from inside the programming environment. GL provides a con-
trolled execution environment for programs. As with standard program testing facilities such
as dbx, a program can be read into the environment and executed in steps or under the con-
trol of breakpoints. Unlike conventional program test facilities, when a program is at a pause
in its execution it is possible to obtain from the environment the extant continuation and the
current store. The continuation is a function representing the remainder of the computation,
and so in a sense a continuation represents the computation's future. A continuation is in
effect a snapshot of the control state extant when a program has been stopped. Similarly, the
contents of the store constitute a snapshot of the data state of the partially executed program.
It is quite convenient, when an executing program is stopped, to dynamically capture the full
continuation extant at that point and experimentally apply it to different stores. Similarly, it
is often convenient to apply the partial continuation representing completion of the most
recently invoked function or the most recent few functions to a variety of different stores.
The power of the environment to allow the user to save and experimentally manipulate both
the control state and data state of a program under study provide a new and interesting para-
digm of reasoning about programs.

2.4. A programming environment based on types-as-propositions

Constructive type theory is being actively investigated by several groups as a new basis
for program development. This approach represents what might be called the ultimate in
strongly typed programming languages. The type system of such a language is much more
powerful than that of a conventional language, and in fact it is sufficiently powerful that it
can be used as a specification language. Hence the term 'types as propositions:' A type
becomes a logical proposition asserting that a program provides a certain function. To specify
a desired program, one simply gives the type of the program. The type system is sufficiently
general and powerful that virtually all computational tasks can be thus specified. The prob-
lem of program verification then reduces to type checking: If a given program can be type
checked and shown to be of the appropriate type, this constitutes a proof that the program
satisfies the specification to which the type corresponds. This research is beginning to have an
impact on the design of programming languages. For instance the module structure of Stan-
dard ML, with its product and existential types, reflects this influence. In this approach data
types, logical expressions, and algorithms are all treated uniformly in a single elegant frame-
work. In such a system, Coquand's calculus of constructions for instance, logical expressions
are lambda terms of a certain sort, programs are lambda terms, and data structures are
represented using lambda terms. So type correctness and program proofs simply involve
checking relationhips of various sorts among lambda terms. This conceptual unity gives the
approach much of its power and appeal.
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We are curently looking at possible implications for programming environments of the
new approach. Our past research in the area of programming environments and that of others
has indicated that one of the problems of current programming environments is that they are
too inflexible. An environment that supports a given programming paradigm often becomes a
straight-jacket, imposing that paradigm even in places where it is awkward or inappropriate.
We are in the early stages of investigating a new multi-paradigm environment based on types
as propositions. Instead of enforcing a single, fixed paradigm, the environment and its
language will support a spectrum of styles. At one extreme is a PRL-like top down approach
for creating a constructive proof of given proposition and hence an algorithm that meets the
specification corresponding to the proof. Alternatively it will be possible to build the program
directly, in a more Hoare-like style in which the algorithm and its proof are developed in tan-
dem. Finally, it will be possible to provide trusted algorithms without proof. The program-
mer should have the flexibility to be able to shift paradigms, eliciting from the support
environment the sort of assistance that is most appropriate at any given point in the develop-
ment process. Moreover, there should be a natural, seamless transition between paradigms.
We hypothesize that such an environment will enable programmers to achieve a new level of
productivity; different programming tasks require different sorts of automated support, and in
a system such as the one we are investigating the programmer will be able to obtain the sorts
or assistance that will most enhance his productivity in a very dynamic, task-driven way
[Duggan 88].

3. Programming Methodology

Program verification technology has generally centered upon Hoare-like predicate cal-
culus axioms or algebraic specifications. Research has progressed on using a functional metho-
dology as an alternative to these techniques. The methodology depends upon a simple execu-
tion trace table as the mechanism to verify a proof, so it is relatively easy to build tools that
use this technique. Research so far has centered upon development of the basic proof metho-
dology [Mills 871 (Gannon 87] [Mills 89].

The basic theory is developed as follows. Let p be a pgram. Lred f be a function. Then
we say that f is the function executed by program p ifLP. f. is defined to be the
transformation that maps a given program state vector (e.g., all of the variables in p and thl4f
asl ate vaus) irnt another state vector. If program p is the sequence: a;b;c;d ..., then p_
-ao b 0 c 0 0...

IF and assignment statements are straightforward (e.g., see [Gannon 87]). The recursive
nature of the WHILE adds some complexity to the process. The basic conditions to insure
that a function f is equivalent to the WHILE statement:

WHILE b DO
d

are:

(A.1) f =D :C&itLId]af

(A.2) domain (.) = domain( [while d d)

(A.3) (Not(b) -' J) = (Not(b) -. Identity).

Given the above three conditions, we can define a mechanism to develop a WHILE loop
that meets a given functional specification f:
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(B.1) range(]) c domain(J).

(B.2) if x E range() then f(x) = x.

(B.3) Find a b such that evaluates to true in domain(]) - range(j).

(B.4) F evaluates to false in range(j).

(B.5) Develop d so all values needed for f are preserved in d.

(B.6) Show that the loop must terminate. Hence Iwhile b do d] is defined on an appropriate
domain.

Research on refining these rules is continuing [Zelkowitz 88d].

4. A Scheduling Compiler

Much of the existing work in detecting parallelism assumes SIMID hardware or global
memories. Many existing MIMD machines of significant size are constructed of processors
which must communicate by message-passing or have global memories with some long access

times.

We analyze programs written in conventional languages for single processors and
transform them to implementations for MIMD machines that minimize execution times [Ben-
net 881. The analysis is performed on the control states of a computation. These states con-
tain receive inputs and produce outputs (including the next computation state).

The steps of the analysis are:

(1) Unroll WHILE statements a finite number of times to obtain a static graph representing
all executions. Each node represents a control state on a separate processor with a cost
that describes the time it executes assuming its input data are already present on its pro-
cessor. Before starting, a node must take time to receive from its parents on different
processors, and after it completes it must take time to send results to its children.

(2) Using continuation probabilities and a heuristic search, draw control trace arcs between
control states to be executed by a single processor. Assigning different states to the
same processor cuts communication costs, but also reduces the amount of parallelism.

(3) For each control trace, generate code inserting communication primitives as needed. If
there are fewer processors than control traces, some control traces will have to be com-
bined before code is generated.

Consider the following example conversion program.

1 num = M;
2 sub = N;
3 while num != 0 do {
4 dig = num mod 10;
5 num = num dlv 10;
a arr[sub] = chr(ord(O') + dig);
7 sub = sub -1
8
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In the figure below, nodes labelled 4.1, 4.2, 4.3, and 4.4 represent the last, next to last,
second to last, and all previous executions of statement 4. Solid lines represent control traces
that should be assigned to a single processor. Nodes connected by dashed lines are each run
on separate processors.

4.1 4..4

\ '
\\

\

Most of the control traces are obvious definition-use pairings except that statement 4 must
transmit the value of num to statement 6 so that the latter can decide if it needs to send the
value of sub to one of its successors.

Choosing the control trace starting at statement 2, we obtain the following subgraph.
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.1

which can be compressed to:

2

Finally code is generated from fhi L1rpompes'ed subgraph.

receive (num);
2 sub = N;

if num div 10 != 0 {
do {

receive (num);
7 sub = sub - 1;

send (T34,sub) ;}
while num != 0;
receive (dig);

6 arr[sub] = chr(ord('O) + dig);
send(T5, arr [sub])
}

else {
receive (dig);

6 arr[sub] = chr(ord('O') + dig);
send(T1 arr [sub])
}

The code corresponding to statement 7.i waits to receive num from a node containing
statement 5.i and sends the value of sub to a receive statement inserted before the code for
statement 6 in a node executing the sequence of instructions <5.i, 4.i+I, 6.i+1 >.
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We are continuing work toward building a prototype compiler. We are also trying to
improve our heuristic for handling conditional statements within loops. While these state-
ments cause other extraction mechanisms severe problems, they are easily represented within
our formalism. However, we need a much better heuristic search algorithm to analyze the
graphs.
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